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Abstract

The plasma generated around a hypersonic vehicle traveling in the atmosphere

has the potenial to alter the vehicle’s radar cross section. In this study radar cross

sections were calculated for an axial symmetric 6-degree half angle blunted cone with

a nose radius of 2.5 cm and length of 3.5 m including and excluding the effects of an

atmospheric hypersonic plasma sheath for altitudes of 40 km, 60 km and 80 km and

speeds of 5 km/s, 6 km/s and 7 km/s. Free stream atmospheric density and tem-

perature conditions were taken from the 1976 U. S. Standard Atmosphere. A NASA

developed code, LAURA, was used to determine the plasma characteristics for the

hypersonic flight conditions using a 11-species 2-temperature chemical model. Runs

were accomplished first with a super-catalytic surface boundary condition without

a turbulence model and then for some cases with an non-reactive surface boundary

condition where a mentor-SST turbulence model was used. The resulting plasma

sheath properties were used to determine the plasma conductivity around the cone

for use in a Finite Difference Time Domain code to calculate the cone’s electromag-

netic scattering from a plane wave source. A near-field to far-field transformation

was used to calculate the radar cross section both with and without the effects of the

plasma sheath. The largest increase in radar cross section (RCS) was found for the

60 km 7km/s case with an increase of 3.84%. A possible small decrease in RCS was

found for the 40 km altitude 5 km/s and 80 km 7 km/s cases on the order of 0.1%
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A COMPUTATIONAL STUDY: THE EFFECT OF HYPERSONIC PLASMA

SHEATHS ON RADAR CROSS SECTION FOR OVER THE HORIZON

RADARS

I. Introduction

Hypersonic glide vehicles are often classified as aerobodies that travel at speeds

in excess of five times the speed of sound using lift within the upper atmosphere to

obtain maneuverability beyond that of a traditional ballistic trajectory. The United

States, China, and Russia all have had recent flight test programs using these types of

vehicles. Examples include the United State’s HTV-2, China’s DZ-ZF, and Russia’s

Yu-74, other countries including India, Israel, Japan, and Pakistan are thought to

also have active development programs [1].

There are a number operational uses purposed for employing hypersonic vehicles

including anti access area denial (A2/AD), A2/AD penetration, and medium to long

range precision strike capability for both conventional and nuclear employment [1]

[2]. The unique features of these vehicles including high speed maneuvering ability

granting non-ballistic trajectories, extended range due to the use of lifting forces, and

active target precision make them challenging threat to traditional systems. Although

the United States has an established defense architecture for the threat of standard

ballistic missiles, a report by the National Academies of Sciences, Engineering, and

Medicine, commissioned by the United States Air Force in 2016 suggest against the

emerging threat of hypersonic vehicles little to no such architecture exists [2]. A

proposed U. S. National Defense Authorization Act for FY2017 specifically rests 25

million dollars of funding on a mandate for the development of a program of record

1
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for hypersonic boost glide vehicle defense which demonstrates significant interest in

this issue [3].

Currently, radar is one system that offers the potential to detect the emerging

threat of hypersonic boost glide vehicles. Over the Horizon Radar (OTHR) observes

reflections from objects beyond the line of sight horizon utilizing skywave and ground

wave phenomena. One of the two main types of OTHR is called Skywave radar, it

utilizes the electromagnetic reflectivity of the Earth’s ionospheric plasma to reflect

radar signals over the horizon. This ability to ’see’ over the horizon is gives OTHR

a significant advantage in surveillance utility compared to traditional line of sight

radars which usually assume a direct reflection off of an object. This advantage

allows skywave OTHR detection distances up to 1000-4000 km in contrast to a line

of sight radar system that even at 1 km in the air could only have a line of sight of

112 km for objects near the ground [4, pg. 1]. For this reason OTHR is often used

for long range aircraft detection and surveillance. The very long detection distance

allows much earlier detection than other types of radar systems, which is important for

hypersonic vehicles which can travel at speeds up to 7 km/s. In order to reflect off of

the ionosphere the radar waves must operate with a frequency lower than the plasma

frequency of the ionosphere, this limits the typical upper bound on the frequency of

OTHR to 3-30 MHz. The ability of a radar system to detect and identify an object

is highly dependent on the amount of energy that object reflects back to the radar

receiver, the measurement of proportionally how much energy is reflected back to a

receiver by an object is known as an object’s radar cross section (RCS).

The ability to properly determine the radar cross section of a hypersonic vehicle

has valuable detection and tracking applications as experimentation with their use

increases around the world. An important aspect of determining the effective radar

cross section of a hypersonic vehicle is the effect of the vehicle’s plasma sheath that

2
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it creates as it moves in the atmosphere at hypersonic speeds from the ablation

of material off of the vehicle’s surface and compressive heating of the atmosphere

itself. Due to electromagnetic interactions this plasma sheath can refract, reflect, and

attenuate the incident radar wave to alter the signal received by the radar station

in ways a non sheathed aircraft body would not. Knowledge about the properties of

the plasma that surrounds a hypersonic vehicle and the way in which electromagnetic

radiation propagation is affected by them will help to evaluate the potential effects of

this plasma on the radar cross section of hypersonic vehicles. This study quantifies

the effects of the plasma sheath on a hypersonic blunted cone’s radar cross section

for three speeds 4 km/s, 5 km/s, and 6km/s, each at three altitudes of 40 km, 60 km,

and 80 km above sea level for a total of nine test conditions.

The approach taken by this study is to use computational modeling of the physics

involved to study this problem. The radial symmetry of the blunted cone is used to

simplify the computations to the realm of 2D space. Both the characteristics of the

plasma around the hypersonic vehicle and the way in which it interacts with incident

radar waves will be obtained by running numerical simulations to solve the differential

equations which model the physical system. The basic equations which govern the

physical properties of the plasma sheath are the Navier-Stokes equations and the

fluid energy equations. The interaction of the incident radar wave with the plasma

sheath and the underlying vehicle is governed by Maxwell’s Equations. An overview

of these equations, the physics behind them, and the way in which they can be treated

numerically is given in the theory section of this study. The subsequent chapters will:

describe the underlying scientific theory used in the computational codes, discuss the

methodology used in this study to preform our computational experiments, analyze

the results of our experiments and their implications, and conclude with talk about

future work and considerations.

3
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II. Theory

The computational work done in this study uses numerical iteration to approxi-

mate the physical behavior behind the phenomena being studied. It is important to

identify the underlying equations used in physics that govern this physical behavior

and understand their meaning. The three main areas of physics which govern the

radar cross section of an object surrounded by a plasma sheath and will be discussed

are: the navier-stokes and associated energy equations which determine the properties

of the fluid, Maxwell’s equations which govern the propagation behavior of the radar

wave through the plasma, and the scattering of an electromagnetic wave off of an ob-

ject which is also governed by Maxwell’s equations. In addition to these three areas

of physics which are important to understanding the results of the study the tech-

niques and associated effects of numerical iteration itself will also be demonstrated

and discussed below.

2.1 Describing a Fluid with the Navier-Stokes Equations

The Navier-Stokes Equations are a system of differential equations used to model

the properties of a fluid through the use of conservation of momentum. Along with

the equations for conservation of mass, energy, and an equation of state they can

be used to solve for the behavior of a fluid subject to boundary conditions. The

derivation of these equations starts by deriving the equation for conservation of mass

within the fluid. The first step is to imagine an infinitesimal volume of the fluid, dV .

The mass within this infinitesimal volume is then given by the integral of the density

ρ(x, y, z, t) through out the volume. The change in this total mass over time must be

equal to the net amount of mass that enters or leaves the volume which is represented

by the integral of the density times fluid velocity vi(x, y, z, t) at every point on the

4
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surface, dS,

∂

∂t

∫
ρ dV = −

∫
ρvin̂i dS (1)

where n̂i is the normal unit vector pointing out of the surface and the Einstein sum-

mation convention is used. This convention is a compact way of writing the equation

out for each basis vector, in typical Cartesian coordinates, i= x, y, z. . If the same

letter subscript is found repeated in a single multiplicative term that implies the term

represents a sum over each of the three basis vectors.

Using the divergence theorem, the right hand side of Equation 1 can also be

written in the form of a volume integral of the divergence of the density times the

fluid velocity. The partial derivative with respect to time is then brought into the

integral since it is independent of volume.

∫
∂

∂t
ρ dV = −

∫
∂

∂xi
(ρvi)dV (2)

Next, since the infinitesimal volume integral is arbitrary in size it is discarded and

both integrands are set equal to each other to obtain our differential equation for

conservation of mass within the fluid.

∂ρ

∂t
= −∂(ρvi)

∂xi
(3)

To derive the momentum equations for the fluid the same argument for momentum

is used as that for mass except rather than being conserved the source of change for

5
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momentum in the x direction is sum of all forces in the x direction as stated by

Newton’s second law.

∂(ρvj)

∂t
+
∂(ρvjvi)

∂xi
=
∑

Fj (4)

The left hand side of this equation can be simplified by applying the chain rule and

then applying the relation obtained from conservation of mass to get:

vj
∂ρ

∂t
+ ρ

∂vj
∂t

+ ρvi
∂vj
∂xi

+ vj
∂(ρvi)

∂xi
=
∑

Fj (5)

ρ
∂vj
∂t

+ ρvi
∂vj
∂xi

=
∑

Fj (6)

The forces on the right hand side of the equation are further identified by explicitly

writing out the internal forces due to the differential changes in normal and shear

stress, where σij is the stress tensor.

ρ
∂vj
∂t

+ ρvi
∂vj
∂xi

=
∂

∂xj
σij +

∑
F body
j (7)

The Newtonian relations for these normal and shear stress components associated

with viscosity are given below where µ is dynamic viscosity, associated with linear

deformation, and λ is the second viscosity, associated with volumetric deformation:

σij = τij − pδij (8)

τij = µ

(
∂vj
∂xi

+
∂vi
∂xj

)
+ λ

(
∂vk
∂xk

)
δij (9)

6
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These definitions are then plugged in into Equation 7 and the Stokes hypothesis

which suggests a value of −2
3
µ for λ is used to obtain the Navier-Stokes equations for

a compressible fluid [5, pg. 398]:

ρ
∂vj
∂t

+ ρvi
∂vj
∂xi

= − ∂

∂xj
(p+

2µ

3

∂vk
∂xk

)+ µ
∂

∂xj

(
∂vj
∂xi

)
+ µ

∂

∂xj

(
∂vi
∂xj

)
+
∑

F body
j

(10)

The physical meaning of Equation 10 is as follows, the first term on the left hand

side represents the change in momentum of the fluid at a particular point as time

passes, the second term represents the change in a fluid’s momentum as it moves to a

different location over time. The combination of each effect describes a total change

in the momentum over time, sometimes referred to as the substantial derivative.

On the right hand side the first term represents a decrease in momentum due to

climbing a pressure gradient (increased by a viscosity term) in the fluid, the second

term represents a source of momentum due to gradients in the flow velocity, the third

term represents a change in momentum influenced by a source of flow velocity, and

the final term represents the contribution of body forces on the fluid to its changing

momentum.

One useful comparison of terms in this equation is between the so called inertial

force of the flow represented by the second term on the left hand side of the equation

and the frictional forces represented by the viscous forces of the second and third

terms on the right hand side of Equation 10. The inertial force is increased by fluid

density and fluid velocity, while the frictional forces are increased by viscosity and an

additional length derivative which can be thought of as being inversely proportional

to a characteristic length scale L over which we expect to see changes in the fluid.

The ratio of these two weighting factors can show how the fluid will behave and is

called the Reynolds number, Re,
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Re =
ρV
µ
L

=
ρV L

µ
(11)

At smaller Reynolds numbers small disturbances that perturb the system are smoothed

and diffused away due to the larger viscosity of the fluid. At higher Reynolds numbers

the inertial forces of these disturbances over power the viscosity and are no longer

dissipated leading to turbulence.

To derive the formula for conservation of energy the argument from the conser-

vation of momentum derivation is paralleled, only instead of a change in momentum

being due to a force, a change in energy of a system is due to heat and work. The

work rate of the fluid can alternatively be written as the net stress flow rate into the

system and the time rate of heat increase can like wise be replaced with the net flow

of heat into the system.

∂E

∂t
+
∂(Evi)

∂xi
=
∑

Ẇ +
∑

Q̇ (12)

∂E

∂t
+
∂Evi
∂xi

=
∂

∂xj
(viσji) +

∂qk
∂xk

(13)

∂E

∂t
+
∂Evi
∂xi

= −
∂(p+ 2µ

3
∂vk
∂xk

)vj

∂xj
+ µ

∂

∂xj

(
vi
∂vj
∂xi

)
+ µ

∂

∂xj

(
vi
∂vi
∂xj

)
+
∂qk
∂xk

(14)

The use of these three conservation laws along with an equation of state creates

a system of differential equations that can be solved numerically. However at higher

Reynolds numbers very small perturbations in the fluid’s velocity and pressure are

no longer dampened out and must be taken into consideration. The scale of these

perturbations can be on the order of micrometers while the scale of objects in the flow

is often of meters to tens of meters. The very large range of scale makes it very com-
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putationally intensive to run the numerical solvers at the lower scales directly, called

direct numerical simulation (DNS). Instead a strategy of using Reynolds-Averaged

Navier-Stokes equations is preferentially used. This method takes the fluid proper-

ties of velocity and pressure and defines them as an average value plus a random

perturbation.

vj = v̄j + v′j (15)

p = p̄+ p′ (16)

These value are then plugged back into the Navier-Stokes equations yielding:

∂ρ(v̄j + v′j)

∂t
+
∂ρ(v̄i + v′i)(v̄j + v′j)

∂xi
= − ∂

∂xj
(p̄+ p′ +

2µ

3

∂(v̄k + v′k)

∂xk
)+

µ
∂

∂xj

(
v̄j + v′j
∂xi

)
+ µ

∂

∂xj

(
v̄i + v′i
∂xj

)
+
∑

F body
j

(17)

This new Navier-Stokes equation is averaged over time so that any single pertur-

bation term averages to zero and what is left is a similar equation to the original

Navier-Stokes equation except the time dependence has been averaged out and there

is now a cross term of the two velocity perturbations:

∂ρ(v̄iv̄j + v′iv
′
j)

∂xi
= − ∂

∂xj
(p̄+

2µ

3

∂v̄k
∂xk

)

+ µ
∂

∂xj

(
∂v̄j
∂xi

)
+ µ

∂

∂xj

(
∂v̄i
∂xj

)
+
∑

F body
j

(18)

Boussinesq proposed that the time average of the product of the velocity fluctu-
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ations could be modeled using a viscosity like set of terms [5, pg. 97]. This has the

effect of adding an additional viscosity component that increases fluid viscosity by

µT :

−ρv′iv′j = 2µT

(
∂v̄j
∂xi

+
∂v̄i
∂xj

)
− 2

3
ρkδij (19)

Where k is the turbulent kinetic energy defined, µT the eddy viscosity, and ω is the

specific turbulence dissipation which are given as [6]:

k =
1

2
v′iv
′
i (20)

µT =
ρk

ω̃
(21)

ω̃ = max

ω,Clim
√√√√2

(
∂v̄j
∂xi

+ ∂v̄i
∂xj

)(
∂v̄j
∂xi

+ ∂v̄i
∂xj

)
β∗

 (22)

This new term k has its own transport equation along with the specific turbulence

dissipation ω in the commonly used k − ω turbulence model. There are a number of

closure parameters in this turbulence model given by: PrT , Clim, α, β, β∗, σ, σ∗, σd

and others, their discussion are outside the scope of this paper and can be found in

[6]. The transport equations whose derivations are reproduced in this chapter can be

neatly summarized with a more general transport equation often expressed in terms

of a general fluid property φ as shown in Equation 23:

∂(ρφ)

∂t
+
∂(ρviφ)

∂xi
=

∂

∂xi

[
Γφ

∂φ

∂xi

]
+ Sφ (23)

10
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where Γφ acts as a diffusion coefficient and Sφ is a source term values of these terms

for specific quantities are shown in Table 1.

Table 1. Values of φ, Γφ, and Sφ for the transport equation

Property φ Γφ Sφ
Mass 1 0 0

Velocity xi µ+ µT − ∂p
∂xi

+ S ′xi

Enthalpy h µT
PrT

∂
∂xi

[
λ ∂T
∂xi

]
+ ∂p

∂t
+ ∂

∂xj
[viτji] + S ′T

Turbulence k µ+ σ∗µT ρτji
∂vj
∂xi
− β∗ρωk

Specific Turbulence Dissipation ω µ+ σµT
αω
k
τji

∂vj
∂xi

+ ρσd
ω

∂k
∂xi

∂ω
∂xi
− βρω2

These combination of these equations are what is used to describe the flow of a fluid.

2.2 Propagation of Electromagnetic Waves in a Plasma

The equations that govern the interactions of electric and magnetic fields are

known as Maxwell’s Equations. Using these equations the propagation of the incident

radar wave, which is an electromagnetic wave, through the plasma sheath and its

reflection off of the hypersonic vehicle can be determined. A numerical method called

the finite difference time domain (FDTD) method is used in this study to numerically

model the radar wave’s propagation. An understanding of how Maxwell’s equations

govern the effects of the plasma on the propagation of an electromagnetic wave is

important for understanding the methodology and results of this study. In this vein

the equations will be manipulated into what is known as a dispersion relation which

shows the relationship between a wave’s frequency ω and its propagation vector k. A

wave’s propagation vector directly determines how the wave propagates in space and

its form can be illuminating for what kinds of things effect the wave’s propagation.

Maxwell’s equations in derivative form are:
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∇·E =
ρ

ε0
(24)

∇×E = −∂B
∂t

(25)

∇·B = 0 (26)

∇×B = µ0J + µ0ε0
∂E

∂t
(27)

Here, E is the electric field, ρ is the free charge, ε0 is the permitivity of free space, B

is the magnetic field, µ0 is the permeability of free space and J is the current density.

The electric field can be expanded as an infinite sum of plane waves propagating in

the k direction with angular frequency ω and a magnitude of Ẽ(k, ω) defined as :

E(r, t) =
1

(2π)2

∫ ∞
−∞

Ẽ(k, ω)ei(k·r−ωt)d3kdω (28)

Note in general substituting a function f(r, t) with its corresponding f̃(k, ω) is done

through a Fourier transform. Under such a transform derivatives with respect to

spacial components of r are equivalent to multiplication of the Fourier transform by

ik and derivatives with respect to t are equivalent to multiplication by−iω. Maxwell’s

Equations under Fourier transform become:

ik· Ẽ =
ρ̃

ε0
(29)

ik × Ẽ = iωB̃ (30)

ik· B̃ = 0 (31)

ik × B̃ = µ0J̃ − µ0ε0iωẼ (32)

12
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here the tilde above the vector designates it is in frequency space.

Next, the current density can be defined as the net sum of the movement of charge

density for each species s as:

J =
∑
s

nsesvs (33)

The velocity of each species can be found using Newton’s Second Law F = ma

ms
∂vs
∂t

= es(E + vs ×B) +
∑
t

(vt − vs)msνst (34)

The first term represents the Coulomb force on the particle and the second term is

the drag force on the particle of species s due to collisions with other species t. If the

external magnetic field is assumed to be negligible and a Fourier transform is taken

Equation 34 becomes:

−msiωṽs = esẼ +ms

∑
t

(ṽt − ṽs)νst (35)

If the reference frame is chosen so that the average velocity of the electrons before

being perturbed by an incident field is zero, then it is a fairly good assumption that

the average velocity of the collisional species t can also be assumed to be zero (or at

the very least negligible compared to the velocity of the electrons due to the incident

electric field), the solution for ṽs after this assumption is:
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ṽs =
−esẼ

ms(iω −
∑

t νst)
(36)

This term is then substituted into the Fourier transformed current equation to obtain:

J̃ =
∑
s

−nse2
sẼ

ms(iω −
∑

t νst)
(37)

This equation for current density is substituted back into Ampere’s Law, Equation

32 to get:

ik × B̃ = µ0

∑
s

−nse2
sẼ

ms(iω −
∑

t νst)
− µ0ε0iωẼ (38)

A substitution is then made using the definition of the plasma frequency, ω2
ps = nse2s

msε0
,

to obtain:

ik × B̃ = µ0ε0
∑
s

−ωps2Ẽ

iω −
∑

t νst
− µ0ε0iωẼ (39)

In order to eliminate the B field from Equation 39, ik is crossed with Equation 30

which allows the left hand side of Equation 39 to be expressed in terms of an electric

field. After substitution of the modified Equation 30 and some manipulation this

gives:
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−c2k × k × Ẽ = ω2Ẽ −
∑
s

ωωps
2Ẽ

ω + i
∑

t νst
(40)

For a chosen coordinate system that aligns the k vector with the z axis the equation

can be rewritten in matrix form as:


−c2k2 + ω2 −

∑
s

ωωps
2

ω+i
∑

t νst
0 0

0 −c2k2 + ω2 −
∑

s
ωωps

2

ω+i
∑

t νst
0

0 0 ω2 −
∑

s
ωωps

2

ω+i
∑

t νst



Ẽx

Ẽy

Ẽz

 =


0

0

0


(41)

The dispersion relation is determined by the solutions to this equation, namely for

the transverse electric field components:

ω2 =
∑
s

ωωps
2

ω + i
∑

t νst
+ c2k2 (42)

Solving for k we find:

k =
1

c

√
ω2 −

∑
s

ωωps2

ω + i
∑

t νst
(43)

which gives an index of refraction:
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n =

√
1−

∑
s

ωps2

ω(ω + i
∑

t νst)
(44)

=

√
1−

∑
s

[
ωps2

ω2 + (
∑

t νst)
2
−

iω2
ps

∑
t νst

ω3 + ω(
∑

t νst)
2
] (45)

These resulting equations for k and n are complex and fairly difficult to interpret

at first glance. In order to get a better grasp of what they mean a plot of the real

and imaginary components of n are shown in Figures 1 and 2 respectively. Table

2 shows the limiting cases obtained by the first order Taylor or Puiseux series for

when the value is very small or very large respectively. Interestingly and relevant

to the study, the presence of a collision frequency reduces the imaginary component

of n and the associated attenuation when the plasma frequency is above the prop-

agation frequency. This is shown in Figure 2 by a decreasing curve with increasing

collision frequency when the plasma frequency is larger than 1MHz, the propagation

frequency. Contrastingly when the plasma frequency is just less than 1MHz, or just

below the propagation frequency, a small collision frequency on the order of 1MHz

actually increases the imaginary component of n, indicating that the collision fre-

quency increases attenuation in that case. While increase attenuation happens at

lower collisional frequencies, the index of refraction also increases which increases

the likely hood the wave will refract or reflect away from that location. In order

to determine a balance between these two contradictory considerations a plot of the

imaginary component of n divided by the deviation of the real component from 1, the

index of refraction for freespace is shown in Figure 3. When both collision frequency

and plasma frequency are well above the propagation frequency increasing the colli-

sion frequency yields a chance for slightly more attenuation while increasing plasma

frequency leads to slightly less.
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Figure 1. Example of Re(n) for example plasma and collision frequencies
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Figure 2. Example of Im(n) for example plasma and collision frequencies
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Table 2. Limiting Cases for Real and Imaginary Components for the Index of Refraction

This table containes the limiting cases for real and imaginary solutions to n from
Equation 45, they were obtained by taking the first order term from the equation’s
Taylor or Puiseux expansion for the limitting case of the value being very small or
large respectively.

ωp

ω

ωp

ν
ν
ω

Re(n) Im(n)

> 1 >> 1 >> 1

√
ω2
pν

2ων2

√
ω2
pν

2ων2

< 1 >> 1 >> 1

√
ω2
pν

2ων2

√
ω2
pν

2ων2

> 1 << 1 >> 1 1
ω2
pν

2ων2

< 1 << 1 >> 1 1
ω2
pν

2ων2

<< 1 << 1 1 1− ω2
p

4ω2

ω2
p

4ω2

1 1 1 0.777 0.322
>> 1 >> 1 1 0.322 ∗ ωp

ω
0.777 ∗ ωp

ω

> 1 >> 1 << 1 0

√
ω2
p

ω2 − 1

< 1 >> 1 << 1

√
1− ω2

p

ω2 0

> 1 << 1 << 1 0

√
ω2
p

ω2 − 1

< 1 << 1 << 1

√
1− ω2

p

ω2 0

Figure 3. Im(n)/abs(n-1) for example plasma and collision frequencies
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2.3 Electromagnetic Scattering and Radar Cross Sections

Electromagnetic Scattering is the study of the ways in which electromagnetic

waves are scattered or redirected after being incident upon an object or system.

The nature of the interaction between the incident wave and the object is generally

governed by the relationship between the object’s size relative to the wavelength of

the incident wave. For this reason scattering effects are usually defined as having

three fairly distinct regions based upon this relationship, the Rayleigh region where

the wavelength is much larger than the object’s dimensions, the Mie region where the

object is has the same order of size as the incident wavelength, and the optical region

where the wavelength is much smaller in size than the objects features. Over the

horizon radar operates at 3-30 MHz, corresponding to a wavelength of 10 m to 100 m

which is larger than the size of the blunted cone indicating that the simulation will

operate most closely to the Rayleigh scattering region. In the Rayleigh region since the

object is smaller than the wavelength the electromagnetically field can often be treated

as inducing electric and magnetic currents which oscillate with the incoming radiation

and re-radiate a scattered field [7, pg. 97]. In the case of a computational simulation

these currents are found numerically form Maxwell’s equations. The differential radar

cross section for a 2D scattering object is defined as the ratio of the the incident power

of the electromagnetic wave divided by the scattered power. Since the power of the

incident and scattered fields are proportional to the square of the electric field it can

also be written in terms of the electric field as seen in Equation 46:

dσ

dφ
=
|E(φ)scattered|2

|Eincident|2
(46)

where σ is the total radar cross section, obtained by an integral over all angular
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directions φ.

2.4 Finite Difference Time Domain (FDTD) Propagation of Electromag-

netic Waves in a Plasma

The method used in this study in order to model the propagation of electromag-

netic waves in a medium is to discretize Maxwell’s differential equations in time and

space and then iterate forward in time as the wave propagates. The time and space

derivatives are discretized through the use of a Taylor series expansion. The general

form of a Taylor series expansion for a function f(x) is:

f(x+ ∆x) =
f(x)

0!
+

∆x

1!

df(x)

dx
+

(∆x)2

2!

d2f(x)

dx2 +
(∆x)3

3!

d3f(x)

dx3 + ... (47)

The variable x can then be discretized onto a grid of uniform spacing ∆x where xi

represents x at grid point i, xi−1 the previous grid point, and xi+1 the subsequent

one. The Taylor series equation now becomes:

f(xi+1) =
f(xi)

0!
+

∆x

1!

df(xi)

dx
+

(∆x)2

2!

d2f(xi)

dx2 +
(∆x)3

3!

d3f(xi)

dx3 + ... (48)

If ∆x is assumed to be small so that 2nd order and higher terms can be ignored, df(xi)
dx

is solved for to find:

df(xi)

dx
=
f(xi+1)− f(xi)

∆x
(49)

since this result only takes into account terms of the first order of ∆x it is called a
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first order approximation.

The procedure can then be repeated using a Taylor series of the function at the

points f(xi+1) and f(xi−1) so that the following system of equations is obtained:

f(xi+1) =
f(xi)

0!
+

∆x

1!

df(xi)

dx
+

(∆x)2

2!

d2f(xi)

dx2 +
(∆x)3

3!

d3f(xi)

dx3 + ... (50)

f(xi−1) =
f(xi)

0!
+
−∆x

1!

df(xi)

dx
+

(−∆x)2

2!

d2f(xi)

dx2 +
(−∆x)3

3!

d3f(xi)

dx3 + ... (51)

Equation 50 is subtracted from 51 to get:

f(xi+1)− f(xi−1) = 2
∆x

1!

df(xi)

dx
+ 2

(∆x)3

3!

d3f(xi)

dx3 + ... (52)

The term df(xi)
dx

is now able to be solved for but notice that the lowest term that

must be ignored is now a 3rd power of ∆x which means that this is a 2nd order

approximation, specifically the 2nd order central difference approximation.

df(xi)

dx
=
f(xi+1)− f(xi−1)

2∆x
(53)

In general if n points are used our system of equations can be represented as a

solvable n× n matrix equation if approximated to the n− 1 order
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f(xi+a)

f(xi+b)

f(xi+c)

f(xi+d)

...


=



1 a∆x (a∆x)2

2!
(a∆x)3

3!
...

1 b∆x (b∆x)2

2!
(b∆x)3

3!
...

1 c∆x (c∆x)2

2!
(c∆x)3

3!
...

1 d∆x (d∆x)2

2!
(d∆x)3

3!
...

... ... ... ... ...





f(xi)

df(xi)
dx

d2f(xi)

dx2

d3f(xi)

dx3

...


(54)

Which has the solution:



f(xi)

df(xi)
dx

d2f(xi)

dx2

d3f(xi)

dx3

...


=



1 a∆x (a∆x)2

2!
(a∆x)3

3!
...

1 b∆x (b∆x)2

2!
(b∆x)3

3!
...

1 c∆x (c∆x)2

2!
(c∆x)3

3!
...

1 d∆x (d∆x)2

2!
(d∆x)3

3!
...

... ... ... ... ...



−1 

f(xi+a)

f(xi+b)

f(xi+c)

f(xi+d)

...


(55)

These finite difference approximations for the derivative will be used to discritize

Maxwell’s equations. In order to numerically propagate an electromagnetic wave

in the time domain Yee developed a method in which the discretized electric and

magnetic field components are calculated alternatively at half time steps on spacial

grids half offset from each other. This gridding technique is known as a Yee cube in

3D and a simplified 2D form is used to take advantage of the radial symmetry present

in the conical aerobody.

In Figures 4 and 5, i represents the x gridding coordinate while k represents the z

gridding coordinate. Notice that the various components of the E and H fields are not

all calculated at the same position only where they are needed for the surrounding

component’s curl from Maxwell’s equations.
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Figure 4. Example of the mesh used for TM wave Yee FDTD propagation simulations
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Figure 5. Example of the mesh used for TE wave Yee FDTD propagation simulations
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To implement Yee’s algorithm, time derivatives of the H and E field components

are solved for from the Maxwell curl equations. The axially symmetric nature of the

cone and its plasma sheath means that the properties are the same for any planar

slice that includes the axis, allowing for a simplification to 2D in one of those planes.

The FDTD simulation will be in the 2D x-z plane so that all derivatives with respect

to the y direction are zero and not shown. Fictitious terms for magnetic conduction

and impressed current are often included which are useful for specifying source terms

and effects for the simulated fields which yields [8, pg. 3]:

∂Ex
∂t

=
1

εx

(
−∂Hy

∂z
− σexEx − Jix

)
(56)

∂Ey
∂t

=
1

εy

(
∂Hx

∂z
− ∂Hz

∂x
− σeyEy − Jiy

)
(57)

∂Ez
∂t

=
1

εz

(
∂Hy

∂x
− σezEz − Jiz

)
(58)

∂Hx

∂t
=

1

µx

(
∂Ey
∂z
− σmx Hx −Mix

)
(59)

∂Hy

∂t
=

1

µy

(
−∂Ex
∂z

+
∂Ez
∂x
− σmy Hy −Miy

)
(60)

∂Hz

∂t
=

1

µz

(
−∂Ey
∂x
− σmz Hz −Miz

)
(61)

Next, the finite difference method shown previously in Equation 55 is used to re-

place the partial derivatives in both time and space with their numerical counterparts

for the derivatives. This becomes for Ey and Hy:
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∂Ey
∂t

=
1

∆t

h∑
l=0

Cl · En+1−l
y (i, k) (62)

∂Hx

∂z
=

1

∆z

h∑
l=0

Cl ·Hn+1/2
x (i, k − h/2 + l) (63)

∂Hz

∂x
=

1

∆x

h∑
l=0

Cl ·Hn+1/2
z (i− h/2 + l, k) (64)

∂Hy

∂t
=

1

∆t

h∑
l=0

Cl ·Hn+1/2−l
y (i, k) (65)

∂Ex
∂z

=
1

∆z

h∑
l=0

Cl · En+1/2
x (i, k − h/2 + l + 1) (66)

∂Ez
∂x

=
1

∆x

h∑
l=0

Cl · En+1/2
z (i− h/2 + l + 1, k) (67)

Here h is the order of the derivative approximation, l increments in integer steps, and

n represents the current time step. The H field is calculated at the half integer time

steps and then the E field is calculated at whole integer steps. The grid vectors i

and k represent the list of indices in the x and z directions respectively. The variable

Cl represents the finite difference coefficient derived in Equation 55 and iterates up

through the weighting factors for the corresponding positions. Note that since a

central difference method is used to differentiate in space, only even values for h

result in integer indices.

These finite difference approximations are substituted in place of the partial

derivatives in Maxwell’s Equations and examples of this for Ey is shown in Equa-

tion 68. After obtaining these new discrete equations the future time steps of the E

and H fields can be expressed in terms of the previous time step values. An example
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of this process is shown for the future time step for Ey in Equation 69 where the finite

difference approximations for H have been written more compactly as ∆H over the

respective coordinate.

C0

∆t
· En+1

y (i, k) +
1

∆t

h∑
l=1

Cl · En+1−l
y (i, k) =

1

εy(i, k)

(
∆H

n+1/2
x (i, k)

∆z
− ∆H

n+1/2
z (i, k)

∆x

)

− 1

εy(i, k)

(
σey(i, k)En+1/2

y (i, k) + J
n+1/2
iy (i, k)

)
(68)

En+1
y (i, k) =

∆t

C0εy(i, k)

(
∆H

n+1/2
x (i, k)

∆z
− ∆H

n+1/2
z (i, k)

∆x

)

− ∆t

C0εy(i, k)

(
σey(i, k)En+1/2

y (i, k) + J
n+1/2
iy (i, k)

)
−

h∑
l=1

Cl
C0

· En+1−l
y (i, k)

(69)

In the Yee algorithm E
n+1/2
y is not known since it is at a half integer time step

and the Yee formulation only solves for integer time steps of E so it is instead ap-

proximated it as the average of the previous and next time step values:

En+1/2
y (i, k) =

En
y (i, k) + En+1

y (i, k)

2
(70)

This approximation is then substituted back into Equation 69 to give:
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En+1
y (i, k) =

∆t

C0εy(i, k)

(
∆H

n+1/2
x (i, k)

∆z
− ∆H

n+1/2
z (i, k)

∆x

)
(71)

− ∆t

C0εy(i, k)
σey(i, k)

(
En
y (i, k) + En+1

y (i, k)

2

)
(72)

− ∆t

C0εy(i, k)
J
n+1/2
iy (i, k) (73)

−
h∑
l=1

Cl
C0

· En+1−l
y (i, k) (74)

An additional En+1
y term has now been introduced to the right hand side by the

approximation for E
n+1/2
y and Equation 74 is no longer explicitly solved for En+1

y .

The steps to resolve for En+1
y are shown in equations 75 through 76:

En+1
y (i, k) +

∆tσey(i, k)

2C0εy(i, k)
· En+1

y (i, k) =
∆t

C0εy(i, k)

(
∆H

n+1/2
x (i, k)

∆z
− ∆H

n+1/2
z (i, k)

∆x

)

− ∆t

C0εy(i, k)
σey(i, k)

En
y (i, k)

2

− ∆t

C0εy(i, k)
J
n+1/2
iy (i, k)

−
h∑
l=1

Cl
C0

· En+1−l
y (i, k)

(75)

Combine the like summations in the third term on the right hand side and multiply

by 2C0ε
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(2C0εy(i, k) + ∆tσey(i, k))En+1
y (i, k) = 2∆t

(
∆H

n+1/2
x (i, k)

∆z
− ∆H

n+1/2
z (i, k)

∆x

)

− 2∆tσey(i, k)
En
y (i, k)

2

− 2∆tJ
n+1/2
iy (i, k)

− 2εy(i, k)
h∑
l=1

Cl · En+1−l
y (i, k)

(76)

The final time stepping equation for calculating En+1
y is shown in Equation 77

which depends only on values of the fields and currents in previous time steps:

En+1
y (i, k) =

2∆t

(2C0εy(i, k) + ∆tσey(i, k))

(
∆H

n+1/2
x (i, k)

∆z
− ∆H

n+1/2
z (i, k)

∆x

)

− 2∆t

(2C0εy(i, k) + ∆tσey(i, k))
σey(i, k)

En
y (i, k)

2

− 2∆t

(2C0εy(i, k) + ∆tσey(i, k))
J
n+1/2
iy (i, k)

− 2εy(i, k)

(2C0εy(i, k) + ∆tσey(i, k))

h∑
l=1

Cl · En+1−l
y (i, k)

(77)

The same methodology is used to arrive at similar solutions for the other field

components shown in equations 78 through 82:
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Hn+1/2
y (i, k) =

2∆t

(2C0µy(i, k) + ∆tσmy (i, k))

(
−∆En

x (i, k)

∆z
+

∆En
z (i, k)

∆x

)
− 2∆t

(2C0µy(i, k) + ∆tσmy (i, k))
σmy (i, k)

H
n−1/2
y (i, k)

2

− 2∆t

(2C0µy(i, k) + ∆tσmy (i, k))
Mn

iy(i, k)

− 2µy(i, k)

(2C0µy(i, k) + ∆tσmy (i, k))

h∑
l=1

Cl ·Hn+1/2−l
y (i, k)

(78)

and the others:

En+1
x (i, k) =

2∆t

(2C0εx(i, k) + ∆tσex(i, k))

(
−∆H

n+1/2
y (i, k)

∆z

)

− 2∆t

(2C0εx(i, k) + ∆tσex(i, k))
σex(i, k)

En
x (i, k)

2

− 2∆t

(2C0εx(i, k) + ∆tσex(i, k))
J
n+1/2
ix (i, k)

− 2εx(i, k)

(2C0εx(i, k) + ∆tσex(i, k))

h∑
l=1

Cl · En+1−l
x (i, k)

(79)

En+1
z (i, k) =

2∆t

(2C0εz(i, k) + ∆tσez(i, k))

(
∆H

n+1/2
y (i, k)

∆x

)

− 2∆t

(2C0εz(i, k) + ∆tσez(i, k))
σez(i, k)

En
z (i, k)

2

− 2∆t

(2C0εz(i, k) + ∆tσez(i, k))
J
n+1/2
iz (i, k)

− 2εz(i, k)

(2C0εz(i, k) + ∆tσez(i, k))

h∑
l=1

Cl · En+1−l
z (i, k)

(80)
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Hn+1/2
x (i, k) =

2∆t

(2C0µx(i, k) + ∆tσmx (i, k))

(
∆En

y (i, k)

∆z

)
− 2∆t

(2C0µx(i, k) + ∆tσmx (i, k))
σmx (i, k)

H
n−1/2
x (i, k)

2

− 2∆t

(2C0µx(i, k) + ∆tσmx (i, k))
Mn

ix(i, k)

− 2µx(i, k)

(2C0µx(i, k) + ∆tσmx (i, k))

h∑
l=1

Cl ·Hn+1/2−l
x (i, k)

(81)

Hn+1/2
z (i, k) =

2∆t

(2C0µz(i, k) + ∆tσmz (i, k))

(
−

∆En
y (i, k)

∆x

)
− 2∆t

(2C0µz(i, k) + ∆tσmz (i, k))
σmz (i, k)

H
n−1/2
z (i, k)

2

− 2∆t

(2C0µz(i, k) + ∆tσmz (i, k))
Mn

iz(i, k)

− 2µz(i, k)

(2C0µz(i, k) + ∆tσmz (i, k))

h∑
l=1

Cl ·Hn+1/2−l
z (i, k)

(82)

Using these updating equations the FDTD code updates first the H fields and

then the E fields to complete a full propagation time step. In addition, to account

for the current created in the plasma by the electric field, it is also necessary to have

a current time stepping term which is derived in a similar way to the time stepping

H fields as it is also calculated at half integer time steps.

The derivation starts with the equation for the force on an electron in an elec-

tromagnetic field from Equation 34 and as before neglect the presence of an external

magnetic field and assume non-electron velocities to be negligible with respect to

electrons velocities in order to get:
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me
∂ve
∂t

= eE + ev ×Bexternal −meve
∑
s

νes (83)

Next multiply both sides of this equation by ne

me
and the electric charge e and substi-

tute in the definition for the plasma frequency and the current density from Equation

33 as before to get:

∂Je
∂t

= ε0ω
2
peE +

e

me

Je ×Bexternal − Je
∑
s

νes (84)

or re-written in component form:

∂Jx
∂t

= ε0ω
2
peEx +

e

me

(JyBz − JzBy)− Jx
∑
s

νes (85)

∂Jy
∂t

= ε0ω
2
peEy +

e

me

(JzBx − JxBz)− Jy
∑
s

νes (86)

∂Jz
∂t

= ε0ω
2
peEz +

e

me

(JxBy − JyBx)− Jz
∑
s

νes (87)

or solved for the components of J :
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Jx =
1∑

s νes(|B|2 + (
∑

s νes)
2)

[
−((
∑
s

νes)
2 − e2B2

x

m2
e

)(
∂Jx
∂t
− ε0ω2

pEx)

+ (−
∑
s

νes
eBz

me

− e2BxBy

m2
e

)(
∂Jy
∂t
− ε0ω2

pEy)

+(
∑
s

νes
eBy

me

− e2BxBz

m2
e

)(
∂Jz
∂t
− ε0ω2

pEz)

] (88)

Jy =
1∑

s νes(|B|2 + (
∑

s νes)
2)

[
(
∑
s

νes
eBz

me

− e2BxBy

m2
e

)(
∂Jx
∂t
− ε0ω2

pEx)

+ (−(
∑
s

νes)
2 −

e2B2
y

m2
e

)(
∂Jy
∂t
− ε0ω2

pEy)

+(−
∑
s

νes
eBx

me

− e2ByBz

m2
e

)(
∂Jz
∂t
− ε0ω2

pEz)

] (89)

(90)

Jz =
1∑

s νes(|B|2 + (
∑

s νes)
2)

[
(−
∑
s

νes
eBy

me

− e2BxBz

m2
e

)(
∂Jx
∂t
− ε0ω2

pEx)

+ (
∑
s

νes
eBz

me

− e2ByBz

m2
e

)(
∂Jy
∂t
− ε0ω2

pEy)

+(
e2B2

x

m2
e

+
e2B2

y

m2
e

)(
∂Jz
∂t
− ε0ω2

pEz)−
1∑
s νes

] (91)

Similar to the E and H field equations, the J current density equation also needs to

be discritized. The procedure for the y-component of the current density is shown

for example, and the procedure and results for other current density components are

analogous. Assuming that the external B field is negligible leaves:
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C0

∆t
· Jn+1/2

y (i, k) +
1

∆t

h∑
l=1

Cl · Jn+1/2−l
y (i, k) = ε0ω

2
peE

n
y (i, k)

− Jny (i, k)
∑
s

νes

(92)

Similar to when discritizing the E field in Equation 69 since the equation needs

J for the current time step it is estimated by averaging the values of the current at

the previous half time step and the next half time step:

C0

∆t
· Jn+1/2

y (i, k) +
1

∆t

h∑
l=1

Cl · Jn+1/2−l
y (i, k) = ε0ω

2
peE

n
y (i, k)

− J
n+1/2
y (i, k)

∑
s νes + J

n−1/2
y (i, k)

∑
s νes

2

(93)

Subtract the sumation of the left hand side from both sides and multiply by ∆t :

C0 · Jn+1/2
y (i, k) = ∆tε0ω

2
peE

n
y (i, k)

−∆t

(
J
n+1/2
y (i, k)

∑
s νes + J

n−1/2
y (i, k)

∑
s νes

)
2

−
h∑
l=1

Cl · Jn+1/2−l
y (i, k)

(94)

Take the J
n+1/2
y term from the right and add it to the left side of the equation:
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(
C0 +

1

2
∆t
∑
s

νes

)
· Jn+1/2

y (i, k) = ∆tε0ω
2
peE

n
y (i, k)

−∆t
J
n−1/2
y (i, k)

∑
s νes

2

−
h∑
l=1

Cl · Jn+1/2−l
y (i, k)

(95)

Finally solve for J
n+1/2
y by dividing through:

Jn+1/2
y (i, k) =

2∆t

(2C0 + ∆t
∑

s νes)
ε0ω

2
peE

n
y (i, k)

− 2∆t

(2C0 + ∆t
∑

s νes)

J
n−1/2
y (i, k)

∑
s νes

2

− 2

(2C0 + ∆t
∑

s νes)

h∑
l=1

Cl · Jn+1/2−l
y (i, k)

(96)

The solutions for Jx and Jz are the same except for their dependence on their respec-

tive electric fields.

With the time step propagation Equations 77 through 82 and 96 now derived it

is important to note several considerations to take into account when modeling elec-

tromagnetic propagation with finite difference equations. The first is known as the

Courant-Friedrichs-Lewy (CFL) condition which gives a necessary but not sufficient

condition for convergence relating the time and distance steps for a grid, while us-

ing it to numerically solve a partial differential equation. On a 2D grid for FDTD

propagation of an electromagnetic field the condition is given as [8, pg. 36]:
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∆t ≤ 1

c
√

1
(∆x)2

+ 1
(∆z)2

(97)

Another important consideration is that of numerical dispersion which can be

illustrated in an example 1D case and then expanded to 2D by inspection. Let’s

begin with a 1D system of differential equations for electromagnetic field propagation

which is governed by the following simplified Maxwell’s Equations in free space [9,

pg. 22]

∂Ey(x, t)

∂t
= −1

ε

∂Hz(x, t)

∂x
(98)

∂Hz(x, t)

∂t
= − 1

µ

∂Ey(x, t)

∂x
(99)

These equations can be consolidated into the single wave equations for Ey:

∂2Ey(x, t)

∂t2
= c2∂

2Ey(x, t)

∂x2 (100)

A solution to this equation takes the form:

Ey(x, t) = Aej(ωt−kx) (101)

Here j =
√
−1. The dispersion relation of a wave is defined as the equation which

relates k the propagation vector to ω the wave frequency. It is obtained by plugging

in the solution to both sides of the wave equation.
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∂2

∂t2
Aej(ωt−kx) = c2 ∂

2

∂x2Ae
j(ωt−kx) (102)

−ω2Aej(ωt−kx) = −c2k2Aej(ωt−kx) (103)

k = ±ω
c

(104)

To show how this analytic solution compares to the dispersion relationship ob-

tained using numerical methods it will be repeated numerically below. First the wave

solution is rewritten in discretized form where i and n are integer grid coordinates

and ∆x and ∆t are the spacing in steps :

Ey(i, n) = Aej(ωn∆t−ki∆x) (105)

Next the previously derived method in Equation 55 is used to numerically evaluate

the differential equation using a second order central difference method:

∂2

∂t2
Aej(ωt−kx) ≈ Aej(ω(n−1)∆t−ki∆x) − 2 ∗ Aej(ω(n)∆t−ki∆x) + Aej(ω(n+1)∆t−ki∆x)

∆t2
(106)

∂2

∂x2Ae
j(ωt−kx) ≈ Aej(ωn∆t−k(i−1)∆x) − 2 ∗ Aej(ωn∆t−k(i)∆x) + Aej(ωn∆t−k(i+1)∆x)

∆x2 (107)

These derivatives are substituted into the wave equation and like terms are removed

from each side to get:
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Ae−jω∆t − 2 + Aejω∆t

∆t2
= c2Ae

jk∆x − 2 + Ae−jk∆x

∆x2 (108)

Which further simplifies:

Acos(ω∆t)− 1

∆t2
= c2Acos(k∆x)− 1

∆x2 (109)

k =
1

∆x
cos−1

(
∆x2(Acos(ω∆t)− 1)

c2∆t2
+ 1

)
(110)

Notice that this equation is distinct from the analytic dispersion relation derived

without discretization but reduces to the analytic solution for small values of k∆x

and ω∆t. This matches intuition as with infinitesimally fine grid spacing the approx-

imation becomes equal to the analytic solution.

2.5 Absorbing Boundary Conditions

Often in simulations it is desirable to simulate objects as free standing in space.

One method to accomplish this is through the use of analytic boundary conditions at

the edge of the simulation grid which absorb outgoing waves as if they continue into

free space. Enquist and Mahjda showed that the standard 2D wave equation could

be factored into a left propagating and right propagating wave equation and then

used this observation to create perfectly absorbing boundary conditions [10]. This

derivation is recreated below for the 2D wave equation in the x-z plane which is given

by:
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(
∂2

∂x2 +
∂2

∂z2 −
1

c2

∂2

∂t2

)
U = 0 (111)

To ease manipulation of the differential operators they are written more compactly

as:

∂2

∂x2 = D2
x (112)

∂2

∂z2 = D2
z (113)

∂2

∂t2
= D2

t (114)

and the wave equation becomes:

(
D2
x +D2

z −
1

c2
D2
t

)
U = 0 (115)

The differential operator term can then be factored as:

(
Dx +

1

c
Dt

√
1− c2

D2
z

D2
t

)(
Dx −

1

c
Dt

√
1− c2

D2
z

D2
t

)
U = 0 (116)

Enquist and Mahjda then showed that at the boundaries of x using each of the ’factors’

results in perfectly absorbing boundary conditions at x = 0 and x = h:
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(
Dx −

1

c
Dt

√
1− c2

D2
z

D2
t

)
U |x=0 = 0 (117)(

Dx +
1

c
Dt

√
1− c2

D2
z

D2
t

)
U |x=h = 0 (118)

However the square root of the differential operators is not well defined and can’t

easily be implemented into discrete code. In order to approximate this differential

equation the square root term can be replaced with its Taylor series truncated at the

desired order of accuracy. The Taylor series of the square root function up to the

second order term is given as:

√
1− s2 = 1− s2

2
+O(s3) (119)

Using this substitution for the square root term the absorbing boundary conditions

become:

(
Dx −

1

c
Dt +

c

2

D2
z

Dt

)
U |x=0 = 0 (120)(

Dx +
1

c
Dt −

c

2

D2
z

Dt

)
U |x=h = 0 (121)

Multiplying by a factor of Dt to remove it from the denominator in the third term

yields the second order equations for 2D absorbing boundary conditions:
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(
DtDx −

1

c
D2
t +

c

2
D2
z

)
U |x=0 = 0 (122)(

DtDx +
1

c
D2
t −

c

2
D2
z

)
U |x=h = 0 (123)

Using these boundary conditions for the y component of an electric field on a x-z grid

yields:

∂2Ey
∂t∂x

|x=0 −
1

c

∂2Ey

∂t2
|x=0 +

c

2

∂2Ey

∂z2 |x=0 = 0 (124)

∂2Ey
∂t∂x

|x=h +
1

c

∂2Ey

∂t2
|x=h −

c

2

∂2Ey

∂z2 |x=h = 0 (125)

∂2Ey
∂t∂z

|z=0 −
1

c

∂2Ey

∂t2
|z=0 +

c

2

∂2Ey

∂x2 |z=0 = 0 (126)

∂2Ey
∂t∂z

|z=h +
1

c

∂2Ey

∂t2
|z=h −

c

2

∂2Ey

∂x2 |z=h = 0 (127)

Mur points out that in the 2D case of free space propagation spacial derivatives

with respect to the E field can be replaced with time derivatives with respect to the H

field in free space by using Maxwell’s equations, specifically by rearranging Equations

59 and 61 without the conductivity and current terms [11]:

∂Ey
∂z

= µx
∂Hx

∂t
(128)

∂Ey
∂x

= −µz
∂Hz

∂t
(129)

Equations 128 and 129 are substituted into equations 124 through 127 to obtain:
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∂2Ey
∂t∂x

|x=0 −
1

c

∂2Ey

∂t2
|x=0 +

µxc

2

∂2Hx

∂z∂t
|x=0 = 0 (130)

∂2Ey
∂t∂x

|x=h +
1

c

∂2Ey

∂t2
|x=h −

µxc

2

∂2Hx

∂z∂t
|x=h = 0 (131)

∂2Ey
∂t∂z

|z=0 −
1

c

∂2Ey

∂t2
|z=0 −

µzc

2

∂2Hz

∂x∂t
|z=0 = 0 (132)

∂2Ey
∂t∂z

|z=h +
1

c

∂2Ey

∂t2
|z=h +

µzc

2

∂2Hz

∂x∂t
|z=h = 0 (133)

These equations can then be integrated with respect to time and the resulting arbi-

trary constant can be set to zero so that the boundary equations only require first

derivatives and finally obtain Mur’s second order accurate first derivative boundary

conditions:

∂Ey
∂x
|x=0 −

1

c

∂Ey
∂t
|x=0 +

µxc

2

∂Hx

∂z
|x=0 = 0 (134)

∂Ey
∂x
|x=h +

1

c

∂Ey
∂t
|x=h −

µxc

2

∂Hx

∂z
|x=h = 0 (135)

∂Ey
∂z
|z=0 −

1

c

∂Ey
∂t
|z=0 −

µzc

2

∂Hz

∂x
|z=0 = 0 (136)

∂Ey
∂z
|z=h +

1

c

∂Ey
∂t
|z=h +

µzc

2

∂Hz

∂x
|z=h = 0 (137)

These are the boundary conditions that are discritized and used in the FDTD simu-

lation.

2.6 Near-Field to Far-Field Transformation

By definition the RCS of an object is calculated using the reflected field far from

the object. Close to the object higher order fields may be created however far away

from the object these fields will decay and become irrelevant for RCS calculations.
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To determine the far-field reflection of the incident electromagnetic wave it is not

necessary to extend the computational grid into the far field from the scattering

object. Instead several methods have been developed to transform the scattered

near-field wave to the far-field form using what is known as a near-field to far-field

transformation. Taflove in his textbook ”Computational Electrodynamics, The Finite

Difference Time Domain” provides an examples of the proof of such a transform using

Green’s theorem and will be recreated in this section [9].

The near to far field transform uses Green’s theorem applied to a surface which

is created by a square surface around the scattering object that is infinitesimally

connected by a thin strip to an infinitely far away surface circularly symmetric in the

far field as shown in Figure 6.

Figure 6. Diagram showing the integration surface for using Green’s Theorem to cal-
culate a Near-Field to Far-Field Transform

Applying Green’s theorem to the y component of the electric field gives:
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∫
S

[
Ẽy(r

′)(∇2)′G(r|r′) − G(r|r′)(∇2)′Ẽy(r
′)
]
ds′

=

∮
C∞

[
Ẽy(r

′)
∂G(r|r′)
∂r′

−G(r|r′)∂Ẽy(r
′)

∂r′

]
dC ′

−
∮
Ca

[
Ẽy(r

′)
∂G(r|r′)
∂n′a

−G(r|r′)∂Ẽy(r
′)

∂n′a

]
dC ′

(138)

here G is the Green’s Function in two dimensional space, Ca is the square path around

the radiating object, and C∞ is a circular path around the object infinitely far away

which is in the far-field. Since both Ẽ and G decay as 1/
√
r′ in two dimensions the

contour integral at the far-field surface goes to zero and the equation reduces to:

∫
S

[
Ẽy(r

′)(∇2)′G(r|r′) − G(r|r′)(∇2)′Ẽy(r
′)
]
ds′

= −
∮
Ca

[
Ẽy(r

′)
∂G(r|r′)
∂n′a

−G(r|r′)∂Ẽy(r
′)

∂n′a

]
dC ′

(139)

The laplacian of Ẽ is fairly simple in Fourier space and G is found using the definition

of Green’s function for a time harmonic series:

(∇2)′G(r|r′) = δ(r − r′)− k2G(r|r′) (140)

(∇2)′Ẽy(r
′) = −k2Ẽy(r

′) (141)

Equation 139 now becomes:
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∫
S

(
Ẽy(r

′)
[
δ(r − r′)− k2G(r|r′)

]
+ G(r|r′)k2Ẽy(r

′)
)
ds′

= −
∮
Ca

[
Ẽy(r

′)
∂G(r|r′)
∂n′a

−G(r|r′)∂Ẽy(r
′)

∂n′a

]
dC ′

(142)

The positive and negative product of k2Ẽy and G cancel in the integral over S

and the derivatives normal to the inner path are generalized to directional gradients

aligned with the path normal to obtain:

∫
S

Ẽy(r
′)δ(r − r′)ds′ = Ẽy(r) = −

∮
Ca

[
Ẽy(r

′)n̂′a ·∇′G(r|r′)−G(r|r′)n̂′a ·∇′Ẽy(r′)
]
dC ′

(143)

In two dimensions the Green’s function for time harmonic systems is given as:

G(r|r′) =
j

4
H

(2)
0 (k|r − r′|) (144)

Where H
(2)
0 is the Hankel function of the second kind. If it is assumed that r is much

larger than r′ this G has the limit as it approaches infinity of:

lim
k|r−r′|→∞

G(r|r′) =
j3/2e−jkr√

8πkr
ejkr̂·r

′
(145)

Taking the gradient of this expression gives:
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lim
k|r−r′|→∞

∇′G(r|r′) = (jkr̂)
j3/2e−jkr√

8πkr
ejkr̂·r

′
(146)

Using these limiting expressions for G in Equation 143 gives:

Ẽy(r) =
j3/2e−jkr√

8πkr

∮
Ca

∇Ẽy(r′) · ejkr̂·r
′
n̂′adC

′

− j3/2e−jkr√
8πkr

∮
Ca

(jkr̂)ejkr̂·r
′ · Ẽy(r′)n̂′adC ′

(147)

Equation 147 can be further simplified by factoring out a term and combining the

path integrals:

Ẽy(r) =
j3/2e−jkr√

8πkr

∮
Ca

[
n̂′a ·∇′Ẽy(r)− jkẼy(r)n̂′a · r̂′

]
ejkr̂·rdC ′ (148)

Next, the gradient of Ẽ is expanded in the Cartesian coordinate system that aligns

with the interior path integral since it is a square:

∇′Ẽ(r′) = x̂′
∂Ẽy
∂x′

+ ẑ′
∂Ẽy
∂z′

(149)

These derivatives of Ẽy can be replaced using Maxwell’s equations with the time

harmonic derivatives of H̃ so the equation becomes:

∇′Ẽ(r′) = x̂′(jωµ0H̃z) + ẑ′(−jωµ0H̃x) = −jωµ0ŷ
′ × H̃(r′) (150)
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Dotting n̂′a to both sides of Equation 150 yields:

n̂′a ·∇′Ẽ(r′) = −jωµ0n̂
′
a ·
[
ŷ′ × H̃(r′)

]
= jωµ0ŷ

′ ·
[
n̂′a × H̃(r′)

]
(151)

The second term on the right hand side of Equation 148 can be rewritten in a similar

way using a vector identity:

n̂′a(ŷ
′ · Ẽ(r′)) · r̂ − Ẽ(r′)(ŷ′ · n̂′a) · r̂ =

(
ŷ′ ×

[
n̂′a × Ẽ(r′)

])
· r̂ (152)

Ẽy(r
′)n̂′a · r̂ =

(
ŷ′ ×

[
n̂′a × Ẽ(r′)

])
· r̂ (153)

Substituting in the terms from Equations 151 and 153 into Equation 148 yields

Ẽy(r) =
j3/2e−jkr√

8πkr

∮
Ca

[
jωµ0ŷ

′ ·
[
n̂′a × H̃(r′)

]
− jk

(
ŷ′ ×

[
n̂′a × Ẽ(r′)

])
· r̂
]
ejkr̂·r

′
dC ′

(154)

This equation can be rewritten in terms of phasor tangential equivalent currents

yielding:

J̃eq(r
′) = n̂a × H̃ (155)

M̃eq(r
′) = −n̂a × Ẽ (156)

Ẽy(r) =
j5/2e−jkr√

8πkr

∮
Ca

[
ωµ0ŷ

′ · J̃eq(r′) + kŷ′ × M̃eq(r
′) · r̂

]
ejkr̂·r

′
dC ′ (157)

The radar cross section in the far field is simply this term without the radial decay
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terms sometimes known as the pattern function F (φ) compared to the incident E field

times 2π radians:

F (φ) = j5/2

∮
Ca

[
ωµ0ŷ

′ · J̃eq(r′) + kŷ′ × M̃eq(r
′) · r̂

]
ejkr̂·r

′
dC ′ (158)

RCSφ =
power scattered per unit angle in direction r̂

incident power per unit length
= 2π

|F (φ)|2

|Ẽinc|2
(159)
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III. Methodology

The approach taken to numerically simulate the effect of hypersonic plasma sheaths

on a basic vehicle’s radar cross section relies on two simulation steps. First a basic

vehicle profile was generated in LAURA and the surrounding atmospheric environ-

ment was simulated for nine hypersonic flight conditions by the computational code.

This simulation had a large number of outputs, the main ones of interest consisted

of the plasma and neutral temperatures, neutral molecular number densities, as well

as ion and electron number densities. Since the calculations were done for an axially

symmetric body they are valid for any planar slice containing the axis, this allows

the FDTD computation to be simplified and run in 2D. For the second simulation

these outputs are used to calculate a conductivity that represents the plasma and

is used in a numerical FDTD code written in MATLAB. This MATLAB code sends

an electromagnetic wave at the hypersonic vehicle and calculates the near field elec-

tromagnetic scattering. A near-field to far-field transformation step is preformed to

obtain the final radar cross section of the hypersonic vehicle. This procedure is pre-

formed both with the plasma conductivity and without it to compare the effect is has

on the vehicles RCS.

3.1 LAURA Simulations

Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is a struc-

tured simulation code maintained by NASA for the modeling of hypersonic flows

around aerobodies [12]. For this project version 5.5 of the code was run on a Linux

system using a command line interface with several input files specifying parameters.

The output data from the code was originally saved into several files (*.g, *.q, *.nam)

that are opened with the Tecplot 360 program. Once opened in Tecplot 360 these
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files were exported into a standard text format that could be read into MATLAB for

plotting and incorporation into the electromagnetic FDTD code. There were three

air density and temperature pairs that correspond to a set of three altitudes in the

atmosphere each run at three speeds for a total of nine condition profiles. The values

for these parameters are specified in Table 3.

Table 3. Atmospheric Conditions used for LAURA Simulations

Altitude (km) Temperature (K) Density (kg/m3) Air Speed (km/s)
40 251 3.85e-03 5, 6, 7
60 245 2.88e-04 5, 6, 7
80 197 1.57e-05 5, 6, 7

A complete example of the namelist file that LAURA uses to initialize its simulation

run and the explanation of the specified parameters are available in the Appendix A.

In these nine simulations several approximations were used to simplify the prob-

lem. The calculations did not account for turbulence, radiative heat transfer, or

ablation. The effect of turbulence is to increase the effective viscosity of the fluid

which increases energy diffusion. Leaving this term out may lead to steeper energy

gradients. Radiative heat transfer is only relevant at very high temperature low speed

flows since it is proportional to the fourth power of temperature. A lower temperatures

it quickly becomes negligible. Ablation is the breaking/burning off of material from

the hypersonic body’s surface, in many applications it is intentionally done to remove

heat from the surface. The main effects of ablation that are relevant for consideration

in the analysis are the introduction of new chemical species derived from the surface

material of the body, usually carbon based. These additional chemicals have the po-

tential to alter the plasma parameters by adding additional chemical species which

have higher or lower ionization energies. However if the concentration of this material

is assumed to be low the effect should be negligible. Also the boundary condition

at the vehicles surface was treated as ’super-catalytic’ meaning that the simulation
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reverted all species to their free stream mass fractions at the surface of the aerobody.

Four additional simulations were run for 80 km altitude at 6 km/s and 5 km/s, and one

at 60 km altitude at 5 km/s. These additional simulations used LAURA’s Menter-

SST two-equation turbulence model as well as an ’equilibrium-catalytic’ boundary

condition at the aerobodies surface meaning that the mass fractions of the species at

the surface were determined to be equal to those one grid above the surface. Those

more complex phenomena were modeled for these four conditions specifically because

they had lower particle densities and would be the much more highly impacted by

the simplifications used in the other cases.

The modeled hypersonic cone was specified to have a 6-degree half angle, a length

of 3.5 meters, and a blunted nose with a circular radius of 2.5 centimeters. The

modeling grid had 128 cells along the symmetry plane, 20 axial direction cells on the

cap, and initially 16 cells outward from the surface which was doubled a total of three

times after sufficient convergence criteria (L2 norm of less than 10−2) before obtaining

total convergence with 128 cells outward from the body surface. Two images showing

the final mesh configuration are shown in Figures 7 and 8.
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Figure 7. Example of the mesh used for LAURA hypersonic simulations
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Figure 8. Zoomed in view of Figure 7, the mesh used for LAURA hypersonic simulations

The approach for obtaining a converged solution starts with a similar method

to that used in the LAURA 5.5 manual and is summarized in Table 4 [13, pg. 68-

73]. Total convergence of the simulation was determined by achieving an L2 norm of

less than 10−10 in most cases, or an L2 norm of less than 10−8 if more than 20,000

iterations had taken place in the final convergence run.
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Table 4. Summary of basic procedural runs in LAURA used to obtain convergence

Run Summary of Procedure
1 Run 2000 iterations with 1500 1st order re-

laxation steps
2 Run with implicit true until 16 initial k di-

rection cells, double 4 times to 128 final k
direction cells, align shock every 2000 itera-
tions up to 3 times

3 Set implicit to false for ’faster’ convergence
run until L2 Norm < 10−10 or > 20,000 iter-
ations, align shock every 2000 iterations up
to 3 times

4 (if not converged) Switch back to implicit true and run with
same exit criteria as the 3rd run, align shock
every 2000 iterations up to 3 times

5 (if not converged) Switch back to implicit false with the same
exit criteria as 3rd and 4th runs.

3.2 Implimenting FDTD Code for RCS Calculation

The Finite Difference Time Domain (FDTD) method is one of the most com-

mon methods used to calculate the radar cross section of objects and has a number

of potential advantages. One advantage of this methods is the ability to watch the

wave interact and travel in real time as it propagates through the environment, this

can aid in the understanding of how the end results of the propagation is obtained.

Another advantage is, in contrast to a frequency domain propagation, multiple fre-

quency and wave forms can be tested in a single simulation. If the effects on a specific

frequency are desired they can be obtained through a Fourier Transform of the in-

put and output. One noted disadvantage is the occurrence of numerical dispersion

which artificially increases the dispersion of a wave being propagated due to the the

discretization of the differential equations [9, pg. 107]. An FDTD MATLAB code

was written for this study to enable control over transference and implementation of

the data obtained from the LAURA hypersonic simulation into the electromagnetic
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propagation code. The FDTD MATLAB code implementation used in this study has

three main components, the main propagation code which handles initial radiation

source and propagation of the electromagnetic wave, the numerical absorbing bound-

ary conditions which allow approximation of an isolated system in free space, and the

extrapolation of the reflected waves to far-field to calculate the far-field radar cross

section.

The main propagation code implementation was the use of a Yee grid with stag-

gered electric and magnetic field components as previously discussed in Section 2.4.

The Yee grid allows for second order numerical accuracy while saving data storage

space since the staggered field components allow for an effective grid twice as fine as

a standard implementation. Due to it’s relative simplicity and high accuracy, Yee’s

implementation is one of the most long lasting and common FDTD implementations

[9, pg. 51].

The presence of the plasma sheath around the hypersonic vehicle is incorporated

into the propagation by defining a plasma current based upon the calculated plasma

frequency as well as the electron-ion and electron-neutral collision frequencies as

shown in Section 2.4. However at higher plasma frequencies the implementation

of Equation 96 becomes problematic because the increase in the plasma current over

a single time step can no longer be considered linear. One solution to this problem is

to choose a time step small enough over which the increase in current is slow enough

that it can be considered linear, unfortunately for the high plasma frequencies in this

study the time step needed to do this is several orders of magnitude smaller than

would other wise would be needed and would therefor increase the run time of the

simulation proportionally. A second solution to this problem is to recognize that

rather than increasing linearly over an entire time step the current will stop rising

when its derivative becomes zero and the current can be said to be in equilibrium.
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This equilibrium value can be found as the solution to the Equation 84 (again ignoring

an external magnetic field) where the derivative of J is zero, or simply:

Je =
ε0ω

2
peE

νes
(160)

This allows the plasma current to be represented with a constant scalar conductivity if

the plasma frequency becomes too high to properly simulate with the relatively course

time steps. Also the nature of the way in which the conductivity is implemented in

Equation 77 ensures that the self-influence of the plasma current on the E field is still

properly taken into account.

A second consideration when implementing the FDTD code is the scaling detail

needed to properly represent the thin plasma sheath. In order to increase the resolu-

tion of the grid without drastically increasing computational time a technique called

frequency scaling was used. The theory of frequency scaling is that if the ratio be-

tween an object’s length scale and incident wavelength is held constant the scattering

response of the electromagnetic wave will be the same [14]. This technique allows the

nose of the blunted cone to be simulated as 10x larger by irradiating it with a wave-

length also 10x larger, which means a frequency 10x smaller than that for which the

response is to simulated. The enlarged blunted cone has a tip radius of 25 cm instead

of 2.5 cm and a full scaled length of 35 m. However the wake region and trailing

effects of the plasma sheath were outside the scope of this study and only the first

1/10th of the cone is simulated to calculate the effects of the plasma sheath (which

is also scaled in size) on the cone’s radar cross section. The calculated collision and

plasma frequencies from the LAURA output are transferred onto the FDTD grid by

taking their values at the closest known point in space in the LAURA output at each

point in the FDTD grid. The conductivity of the vehicle itself is calculated using a
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Drude fit of the collision and plasma frequencies for titanium, ν = 1.146 × 1013 Hz,

ωp = 6.09× 1014 Hz, which is a major metallurgical component of the SR-71 and was

a sufficient generic conductivity for the purposes of this study [15].

The implementation of highly absorbing boundary conditions in the code utilizes

a second order finite difference formulation described by Mur [11] and reproduced

in Section 2.5. Mur applied the discretized analytic absorbing boundary conditions

derived from the one way wave equations in [10] to the Yee propagation method for

electromagnetic waves. These highly absorbing boundary conditions are necessary to

attenuate the reflection of the reflected waves at the boundaries of the simulation so

that an equilibrium solution can be obtained for the radar reflection and the far-field

extrapolation of the reflected field can be calculated.

The near-to-far-field transform of the reflected wave uses the surface equivalence

theorem and Green’s Theorem to calculate the reflected far-field electric and magnetic

fields at an arbitrary location in space [9, pg. 329]. The transform integrates the

magnetic and electric fields along an arbitrary virtual surface to obtain equivalent

electric and magnetic current sources which represent the source of the original fields,

the derivation of this is reproduced in Section 2.6. Using these new current sources

with Green’s Theorem allows for the calculation of the electric and magnetic fields

anywhere in space. By calculating these fields at a distance in the far-field they can

then be used to determine the reflected energy for a total bistatic RCS calculation. A

diagram showing the layout of the NTFF boundary and other considerations in the

simulation space is shown in Figure 9.
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Figure 9. Diagram showing the set-up of the simulation space

The electromagnetic field source in the FDTD simulation is a “soft” sinusoidal

line current surrounded by free space flowing in the y direction with a frequency

of 3 MHz. This oscillating current creates a TM cylindrical wave which propagates

through the Ey, Hx, and Hz fields. The term “soft” indicates that the current was

not directly specified at that point, instead it was calculated as an additive Jiy
n+1/2

term in Equation 77. This source term is positioned at a point (2,4) as shown in

Figure 9 which is 3 scaled meters from the center of the cone’s circular nose tip. The

source current was run continuously, steady state equilibrium within the simulation

space was reached as designated by the total relative change in energy being less than

0.1% from the energy calculated after the previous wavelength. In order to calculate

the energy field in the simulation space at exactly the same phase from the source the

time step was decreased as necessary so that its product with the frequency would

be an integer value. After an equilibrium state was reached the source irradiation

was continued for two subsequent wavelength cycles while the electric and magnetic

fields were recorded along the NTFF boundary to preform the NTFF transformation
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discussed in Section 2.6

In order to verify the physical validity of the code a bistatic radar cross section

for a conducting square with sides one meter in length was calculated at a frequency

of 600 MHz using a sine wave current source in the y direction. The source creates a

cylindrical wave and was 16.1 meters from the conducting square which was oriented

with one of its corners directly facing the source. The source was placed far from the

square to better approximate an incoming plane wave which was the source used in

the reference paper used to compare against [14]. A set-up diagram for this case is

shown in Figure 10.

Figure 10. The computational set-up for the 600 MHz conducting square RCS verifi-
cation run

The 600 MHz frequency was chosen as the higher frequency creates a more feature

rich bistatic radar cross section that allows for a more robust feature comparison

than that of the lower frequencies. The bistatic RCS obtained from this calculation

is shown in Figure 11. The magnitude of the radar cross section was not corrected

for distance from the source, the reference paper did not specify how they normalized

their calculated bistatic cross sections so only a comparison between shapes of the
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curves is valid, not absolute values. Visual inspection of the 300 MHz and 600 MHz

cases from page 5798 in the reference paper [14] shows that our obtained bistatic

RCS appears to fall somewhere between those two cases. Remember that the point

source used in this study, although far away still does not perfectly represent the

plane wave used in the reference paper so some difference is to be expected. Due to

the similarity of the general pattern and symmetry with the reference cases the code

was considered physically valid until the use of a plane wave source in the code can

be properly implemented for full verification.

Figure 11. The bistatic radar cross section obtained from the code for a frequency of
600 MHz
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IV. Analysis

4.1 LAURA Results

The resulting data from the LAURA simulation was imported into MATLAB

and post-processed to calculate plasma and electron-neutral and electron-ion collision

frequencies for each simulation point on the grid. The total electron-neutral and

electron-ion collision frequencies were calculated based on sum of the semi-empirical

relations for each species given in [16] and [17, pg. 104]. The resulting index of

refraction and skin depth plots in Figures 12 through 19 are four of the thirteen total

converged simulations run for this study. Index of refraction was calculated using

Equation 44. Skin depth is calculated from the inverse of the imaginary component

of k and represents the distance for a electromagnetic wave to attenuate 36.8% in a

material, a higher skin depth means less attenuation, a vacuum has an infinite skin

depth.

νei =
54.5niZ

2
i

T
3/2
e

(161)

Table 5. Semi-empirical relations for the electron neutral collision frequency

Species νen (Hz)
N2 2.33× 10−11n(N2)(1− 1.21× 10−4Te)Te

O2 1.82× 10−10n(O2)(1 + 3.6× 10−2T
1/2
e )T

1/2
e

O 2.8× 10−10n(O)T
1/2
e

62



www.manaraa.com

Figure 12. Example of the index of refraction of plasma calculated from LAURA
simulations at 60 km 5 km/s
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Figure 13. Example of the skin depth of plasma calculated from LAURA simulations
at 60 km 5 km/s
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Figure 14. Example of the index of refraction of plasma calculated from LAURA
simulations at 80 km 5km/s
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Figure 15. Example of the skin depth of plasma calculated from LAURA simulations
at 80 km 5km/s
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Figure 16. Example of the index of refraction of plasma calculated from LAURA
simulations at 80 km 6 km/s

67



www.manaraa.com

Figure 17. Example of the skin depth of plasma calculated from LAURA simulations
at 80 km 6 km/s
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Figure 18. Example of the index of refraction of plasma calculated from LAURA
simulations at 80km 7 km/s
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Figure 19. Example of the skin depth of plasma calculated from LAURA simulations
at 80km 7 km/s

These four LAURA simulations represent the simulation conditions which ob-

tained satisfactory convergence with the additional simulation parameters of a shear-

stress transport turbulence model and an equilibrium catalytic surface boundary con-

ditions not accounted for in the original nine simulations. The plots consist of a plot

of the calculated skin depth around the blunted cone and the calculated index of

refraction both for the entire vehicle and then just the front 10%. A relatively lower
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skin depth attenuates the wave more which means a lower radar cross section as

the plasma acts to absorb energy from the wave. The calculated index of refraction

determines at what point the incident radar wave will reflect, in all cases there is

negligible skin depth attenuation effects indicating we should expect minimal energy

absorption by the plasma. The simulations lower in altitude and the higher speed

seem to be correlated with a higher index of refraction in the plasma indicating we

would expect the hypersonic vehicle to have a larger effective radar cross section than

it would without the plasma sheath as it increases the effective reflecting body.

4.2 RCS Results

A total of thirteen FDTD simulations were run to calculate the relative RCS

using the plasma conditions obtained from the LAURA simulation. The simulations

were run on a 3.30 GHz Intel Xeon E3-1226 CPU with 8 GB of installed RAM using

MATLAB R2015a. A grid size of 300 × 300 points was used to represent an 8 m × 8

m area, giving a dx and dz of 0.02667 m each and a dt of 3.1422e-11 seconds. The run

time for each simulation was 4.45 hours to reach a convergence limit of less than 0.1%

change in the total energy field in the simulation space. The simulation calculates the

relative RCS by first running the simulation with free space surrounding the blunted

cone, and subsequently with the calculated plasma sheath surrounding the blunted

cone, the bistatic cross section for the plasma sheathed cone is divided by the cross

section obtained for the cone in free space to obtain the relative change in the RCS

caused by the plasma sheath. As mentioned previously, frequency scaling was used

to enlarge the plasma sheath area in the simulation and increase detail. These RCS

calculations are valid for the specified cone dimensions and a propagation frequency

of 30 MHz. The bistatic angle is measured counter-clockwise from a vector created

by drawing a line from the source to the tip of the cone. Additionally since only the
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tip of the hypersonic cone was simulated only the RCS values between 100 and 260

degrees are considered representative. Angles outside of this range would likely be

heavily influenced by the unsimulated wake region. The plots of the bistatic cross

section for three interesting cases are shown in Figures 20 through 22 the remaining

cases studied are in the appendix:

Figure 20. Relative radar cross section results at 30 MHz for an altitude of 40km and
a speed of 5 km/s

Note due to the lack of inclusion of wake region effects in this study RCS values below
100 and above 260 degrees are not considered realistic.

72



www.manaraa.com

Figure 21. Relative radar cross section results at 30 MHz for an altitude of 60km and
a speed of 7 km/s

Note due to the lack of inclusion of wake region effects in this study RCS values below
100 and above 260 degrees are not considered realistic.

Figure 22. Relative radar cross section results at 30 MHz for an altitude of 80km and
a speed of 7 km/s

This simulation includes equilibrium catalytic boundary condition at the body surface
and the mentor SST turbulence model. Note due to the lack of inclusion of wake region
effects in this study RCS values below 100 and above 260 degrees are not considered
realistic.
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These three cases were highlighted for discussion because the 40 km at 5 km/s

and 80 km at 7 km/s cases are those which showed possible ’reduction’ in RCS at

their specific altitudes, and the 60 km case had the largest increase in RCS out of all

9 cases. The main conclusion drawn from these results is that in general the larger

the electron density around the hypersonic cone the larger its conductive area which

means the wave reflects off of a larger conductive object corresponding a larger RCS.

These results show that although there have been a number of studies on the potential

energy absorption effects of a hypothetical plasma sheath, the dominant mechanism

of interaction under the hypersonic conditions simulated in this study is RCS increase

rather than decrease due to the sharp increase of electron density at the shock front

of the hypersonic cone and the lower frequencies of OTHR [18] [19] [20] [21].

One possible physical explanation for the reduced RCS in the 40 km altitude at

5 km/s case is that although there is some electron density build up around the

blunted cone, being at a lower altitude the particle density is much higher than at

the higher altitude cases so the larger collision frequency acts to dampen the electric

field slightly as it is reflected. At higher speeds for the 40 km altitude the electrons

density increases sharply enough so that the wave is reflected before it can noticeably

attenuate and the conductive enlarging effect leads to a relative increase in RCS. For

the 80 km at 7 km/s case, there is just enough electron density to slightly interact and

dampen the wave via the collision process, the lower speeds at 80 km altitude have

low enough electron density that there is essentially no interaction with the wave and

the RCS appears the same as that of the bare hypersonic cone. These trends would

agree with those previously shown Figure 3. However since these reductions were of

such small orders of magnitude further studies with a more refined grid could help

determine whether these effects were truly physical or due to some sort of numerical

error.
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V. Conclusion

Using a two step process of first determining the plasma conditions of a hypersonic

plasma sheath, and subsequently propagating an incident electromagnetic wave at the

sheathed vehicle the effect of the sheath on the vehicle’s RCS was computationally cal-

culated. The simulated electromagnetic scattering off of the tip of a plasma sheathed

hypersonic cone in general was found to yield an relative RCS due to the increased

area of conductivity around the object provided by its plasma sheath. This indicates

under the simulated conditions the plasma was acting primarily reflective rather than

attenuative in nature. Two noted exceptions were found where a potential decrease

in relative RCS was calculated, however these decreases were small in nature and may

require more detailed study to be conclusive. The maximum increase occurred at 60

km in altitude at 7 km/s at 3.84% and the relative decreases were found at 40 km

altitude with a speed of 5 km/s and at 80 km altitude with a speed of 7 km/s, with

the relative decrease at 40 km being the larger of the two at 0.1%.

There are a number of additional topics of interest in this problem that were

not included in this study should be the subject of future work. Principle among

possible expansions of this study is the incorporation of the extended plasma wake

region following the tail of the hypersonic body. If this wake region has a large

enough electron density to interact with the incident electromagnetic field its longer

length could lead to complex and interesting resonance region scattering. Another

valuable extension of this study would be the inclusion of multiple angles of attack

which could drastically change the electron density distribution around the vehicle.

More complex considerations could also include: the possible dynamic fluctuation

in the plasma characteristics in time, the seasonal and other variances in the upper

atmosphere, higher order plasma dampening and collisional models, and the effects

of various ablation materials.
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This study takes the first step at developing a comprehensive flexible framework

to integrate data from a simulated hypersonic plasma sheath to determine how it

interacts with incident and potentially outgoing electromagnetic radiation. Hyper-

sonic vehicle testing has become more prominent in practice and theory as technology

advances. A tool to help characterize the potential electromagnetic effects they may

encounter should provide insights for designing and planning experimental tests.
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VI. Appendix
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6.1 Example LAURA Namelist File

&l a u r a n a m e l i s t
v e l o c i t y r e f = 5000 .0 ! r e f e r e n c e v e l o c i t y , m/ s
d e n s i t y r e f = 0.000288 ! r e f e r e n c e dens i ty , kg/mˆ3
t r e f = 245 ! r e f e r e n c e temperature , K
alpha = 0 .0 ! p i t ch angle , degree s
t w a l l b c = 500 .0 ! i n i t i a l wa l l temperature , K
chem f lag = 1 ! 0 chemica l l y f rozen , 1 chemica l source on
the rm f lag = 1 ! 0 thermal ly f rozen , 1 thermal source on
i r e s t = 1 ! 0 f o r f r e s h s ta r t , 1 f o r r e s t a r t
ncyc = 20000 ! g l o b a l s t ep s
jupdate = 4 ! s t ep s between update o f j acob ian
ntran = 4 ! s t ep s between update o f t r anspo r t p r o p e r t i e s
n i t f o = 0 ! number o f 1 st−order r e l a x a t i o n s t ep s
i t e r w r t = 400 ! s t ep s between saves o f in t e rmed ia t e s o l u t i o n
r f i n v = 2 .0 ! i n v i s c i d r e l a x a t i o n parameter
r f v i s = 1 .0 ! v i s c ou s r e l a x a t i o n parameter
movegrd = 0 ! number o f s t ep s between c a l l s to a l i g n s h o c k
maxmoves = 0 ! maximum number o f c a l l s to a l i g n s h o c k
r e c e l l = 0 .1 ! t a r g e t c e l l r eyno lds number at wa l l
f sh = 0 .6 ! t a r g e t bow shock p o s i t i o n arc l ength f r a c t i o n
kmax error = 0.01 ! e r r o r norm t r i g g e r i n g k−c e l l i n c r e a s e
kmax f ina l = 128 ! f i n a l number o f k−c e l l s
nexch = 2 ! s t ep s between exchange o f i n f o in mpi
f r a c l i n e i m p l i c i t = 0 .7 ! f r a c t i o n o f l i n e by block t r i−dia
su r f a c e t empe ra tu r e type 0 = ’ r a d i a t i v e equ i l ib r ium ’
c a t a l y s i s m o d e l 0 = ’ equ i l ib r ium−c a t a l y t i c ’
turb model type = 6
emi s s a 0 = 0.89
ept = 0.010 ! r e l a x a t i o n f a c t o r on read eq wal l bc
p o i n t i m p l i c i t = . t rue .
d imens i ona l i t y = ’ axisymmetric ’
xmc = 2.3333
ymc = 0.0000
zmc = 0.0000
g r i d c o n v e r s i o n f a c t o r = 1.0000
s r e f = 0.66494E−02
c r e f = 3.5000
/

Figure 23. Example of a LAURA namelist file for the 60 km altitude 5 km/s case
including turbulence
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6.2 Explanation of LAURA Namelist File

Table 6. Explanation of LAURA Namelist Parameters

Flag Default Value Meaning Units

velocity ref XXXXX This is the velocity of the far-field

flow stream for the simulation

m/s

density ref XXXXX This is the density of the far-field

flow stream for the simulation

kg/m3

tref 200 This is the temperature of the far-

field flow stream for the simula-

tion

K

alpha 0 This is the angle of attack which

indicates the angular difference

between the reference axis indi-

cating the objects orientation and

the free stream velocity vector

degrees

twall bc 500 This is the initial temperature of

the solid surface boundary condi-

tion

K

chem flag 1 Turn on or off chemical source

calculating for nonequilibrium

flow

-

therm flag 1 Turn on or off thermal source cal-

culating for nonequilibrium flow

-
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irest 0 Determines whether to con-

tinue solution calculations from

laura.rst (irest=0) or to restart

using free stream values (irest=1)

-

ncyc 1000 Number of full cycle iterations -

jupdate 10 Number of cycles between updat-

ing the jacobian, which is the ma-

trix relationship of various vari-

ables with each other

-

ntran 1 Number of cycles before refresh-

ing the transport equations based

on newly calculated properties

-

nitfo 0 Number of steps run with only

1st order approximations. Useful

for faster simulation initialization

before high order approximations

are used for more detailed conver-

gence

-

iterwrt 200 Number of steps run between sav-

ing of partial output files

-

rf inv 3 Inviscid relaxation factor, a

weighting that helps to ’average’

the newly calculated values in the

iterative process with the prior

iteration to help convergence.

-
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rf vis 1 Viscous relaxation factor, a

weighting that helps to ’average’

the newly calculated values in the

iterative process with the prior

iteration to help convergence.

-

movegrd 0 Number of cycles between calcu-

lating various grid alignment pa-

rameters, 0 means no grid align-

ment calculations are done. Grid

alignment seeks to modify the lo-

cation of the free stream bound-

ary based on bow shock location

via align shock

-

maxmoves 0 Maximum number of grid adap-

tation calls in a run.

-

re cell 0.1 Determines the goal cell Reynolds

number at a wall after a grid

movement. In essence it defines

the proper scaling of cell scaling

at a wall based on flow properties.

-

fsh 0.8 Determines the relative distance

between surface and inflow where

the bow shock is expected

-
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kmax error 0.01 Increases cells in k direction by

an amount kmax factor when the

global L2 error norm reaches this

value until the maximum number

kmax final is reached.

-

kmax final 0 Goal number of cells in the k di-

rection.

-

nexch 2 Number of cycles between com-

bining parallel process to update

cell conditions

-

frac line implicit 0.7 Designates the fraction of line-

implicit to be used in relaxation

-

surface temperature type 0 ’constant’ Designates which model to use for

surface temperature

-
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6.3 Relative RCS Results

Figure 24. Relative radar cross section results at 30 MHz for an altitude of 40km and
a speed of 6 km/s

Note due to the lack of inclusion of wake region effects in this study RCS values below
100 and above 260 degrees are not considered realistic.
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Figure 25. Relative radar cross section results at 30 MHz for an altitude of 40km and
a speed of 7 km/s

Note due to the lack of inclusion of wake region effects in this study RCS values below
100 and above 260 degrees are not considered realistic.

Figure 26. Relative radar cross section results at 30 MHz for an altitude of 60km and
a speed of 5 km/s

This simulation includes equilibrium catalytic boundary condition at the body surface
and the mentor SST turbulence model. Note due to the lack of inclusion of wake region
effects in this study RCS values below 100 and above 260 degrees are not considered
realistic.
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Figure 27. Relative radar cross section results at 30 MHz for an altitude of 60km and
a speed of 6 km/s

Note due to the lack of inclusion of wake region effects in this study RCS values below
100 and above 260 degrees are not considered realistic.

Figure 28. Relative radar cross section results at 30 MHz for an altitude of 80km and
a speed of 5 km/s

This simulation includes equilibrium catalytic boundary condition at the body surface
and the mentor SST turbulence model. Note due to the lack of inclusion of wake region
effects in this study RCS values below 100 and above 260 degrees are not considered
realistic.
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Figure 29. Relative radar cross section results at 30 MHz for an altitude of 80km and
a speed of 6 km/s

This simulation includes equilibrium catalytic boundary condition at the body surface
and the mentor SST turbulence model. Note due to the lack of inclusion of wake region
effects in this study RCS values below 100 and above 260 degrees are not considered
realistic.
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